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What this talk is about

e Derive a reverse Expected Shortfall optimization formula.

e Compare the symmetries between ES optimization formula and the
reverse one.

e Provide applications on worst-case risk under model uncertainty.

e Develop further theoretical results on reverse ES optimization
formula

e Reverse optimized certainty equivalents (OCE) formula.
e Related Fenchel-Legendre transforms.

Based on joint work with Yuanying Guan (DePaul) and Ruodu Wang
(Waterloo)
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Preliminary

e (Q,F,P) atomless probability space.

e Let X be the set of integrable random variable, and X be the
random loss.

o Left-quantile: VaR_ (X) =inf{t e R: P(X < t)>a};

e Right-quantile: VaR(X) = inf{t € R: P(X < t)>a}. !
o Expected shortfall: ES.(X) = 11 [1 VaRj dg. 2

o Left-Expected shortfall: ESZ(X) = X [* VaRj(X)ds

T«

VaRy (X) = —oo and VaR{ (X) = co.
*ES1(X) = VaR] (X).
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ES/CVaR optimization formula

m 1 (Rockafella and Uryasev, 2002)
For X € X and « € (0,1), it holds

1
ESo(X) =min<t+ ——E[(X —t ) 1
5200 = mip { -+ -T_El(x - 01,1} )
and the set of minimizers for (1) is [VaR_, (X), VaR} (X)].
v
TITLE CITED BY YEAR
Optimization of conditional value-at-risk 2000

RT Rockafellar, S Uryasev
Journal of risk 2, 21-42

Conditional value-at-risk for general loss distributions 4530 2002
RT Rockafellar, S Uryasev
Journal of banking & finance 26 (7), 1443-1471

1Source: https://scholar.google.ca/citations?user=UwglzpkAAAA J&hl=enoi=sra
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Why is ES optimization formula such influential

e Optimization: efficient optimization techniques are not compatible
with percentiles of distribution

e ES optimization formula is convex w.r.t. t
e Transform the problem into a linear program.

e Calculation: difficult to directly handle/calculate ES,

e Minimizing the function w.r.t. t gives ES.
e VaR is the minimum point of this function w.r.t. t.
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Reverse ES optimization formula

Theorem 2 (Reverse ES optimization formula)
For X € X and t € R, it holds

E[(X - t)+] = S {(1 = a) (ESa(X) — 1)}, ()

and the set of maximizers for (2) is [P(X < t),P(X < t)].

For t € R and X € X, it holds

E[X At] = aren:)nl {aESZ(X) + (1 — a)t}, (3)

and the set of minimizers for (3) is [P(X < t), P(X < t)].
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Reverse ES optimization formula (cont.)

Proof sketch.
o Let g:[0,1] > R,a— (1 — a)(ESa(X) —t)
e Forany a,a’ € [0,1]

g(a)—g(a) = /a i (VaRy (X) ~ 1) a5 = /a i (VaR5(x) ~ ) 5.

(! (1

e Check that the following statements hold
(i) a>P(X <t)<= VaR_(X) >t

(") a <P(X < t) <= VaR_ (X) <
(i) a <P(X < t) <= VaR (X)) < t
(i) a>P(X < t) <= VaRI(X)

Zhanyi Jiao (z27jiao@uwaterloo.ca) A reverse ES/CVaR optimization formula



Reverse ES optimization formula
00000

Reverse ES optimization formula (cont.)

Proof sketch (cont.)
e Let [c,d] = [P(X < t),P(X < t)], check that

e Fora>d, (i) + (I) = g(a) < g(d)

e Fora<d, (i) + () = g(a) < g(d)

e Fora<c, (i) + () = g(a) < g(c)

e Fora>c (i) + (I) = g(a) < g(c)
e Proved [P(X < t),P(X < t)] is the maximizers

g(a) < g(c) = glaz) = g(d) > g(az) forar <c<ar<d<as

e Show that (2) holds

s@)= [ (VRGO —¢) 45 = B(X )]

P(X<t)
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Symmetries between two formulas

(1) Functional properties on X

e For a fixed t € R, the mapping X — E[(X — t)] is linear in
the distribution of X and convex in the quantile of X.

e For a fixed a € (0,1), the mapping X — ES,(X) is linear in
the quantile of X and concave in the distribution of X.

(2) Optimization problems
e In the minimization (1) over t € R, the function

t— t+ E[(X — t);] is convex in t.

(e}
e In the maximization (2) over « € [0, 1], the function

a— (1 —a)(ESy(X) — t) is concave in a.
(3) Solutions to the optimization problems

(4) Parametric forms
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Symmetries between two formulas (cont.)

Theorem 1 (ES/CVaR optimization formula)
For X € X and «a € (0,1), it holds

ESa(X) = min {r+ —LB[(X - t)+]} ,

teR

and the set of minimizers is [VaR,, (X), VaRZ (X)].

.

Theorem 2 (Reverse ES optimization formula)
For X € X and t € R, it holds

E[(X —t)4] = I8 {(1 = a) (ESa(X) — 1)},

and the set of maximizers is [P(X < t),P(X < t)].

\,
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Worst-case mean excess loss

Suppose that there is uncertainty about a random vector X, assumed to
be in a set U, and f : RY — R is a loss function. By the reverse ES
optimization formula, the worst-case mean excess loss is computed by

sup BI(F(X) )] = max {1 a) (sup ES,(r(x)) ) |.

Xeu a€lo,1] Xeu

Zhanyi Jiao (z27jiao@uwaterloo.ca) A reverse ES/CVaR optimization formula



Worst-case risk
00O®00000000

Uncertainty set induced by moment information

e Uncertainty set induced by mean and a higher moment: for p > 1,
m € R and v > 0, denote by

£P(m,v) = {X € X : E[X] = m, E[|X — m"] < v"}.

e The problem of supxczp(m,,) P(X) is better suited for p = ES,, (see
e.g., (Pesenti et al, 2020))

® SUPxco(m,v) P(X) = M=+ vsupxerr(o,1) P(X).
® SUPxcro(my) ESa(X) =m+va(aP(l —a)+ (1 - a)Pa) /P

# mean excess loss p : X — E[(X — t)4].

Zhanyi Jiao (z27jiao@uwaterloo.ca) A reverse ES/CVaR optimization formula



Worst-case risk
000®0000000

Uncertainty set induced by moment information (cont.)

Proposition 3

For p>1, m,t € R and v > 0, we have

sup  E[(X —t)+] = max {(1 —a)(m—t)
XeLr(m,v) a€lo,1]

+v((l-a) P+ alfp)il/p }

In the most popular case p = 2, Proposition 3 gives

1
sup ]E[(X—t)+]:7(m—t+ v2+(m—t)2)7
XeL(m,v) 2

which coincides with Jagannathan (1977).
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Numerical example
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Figure: Worst-case mean excess loss with moment conditions in £P(0, 1):
L£P(0,1) ={X e X :E[X] =0, E[|X|P] <1}

Zhanyi Jiao (z27jiao@uwaterloo.ca) /CVaR optimization formula



Worst-case risk
00000®00000

Uncertainty set induced by Wasserstein metrics

e Wasserstein metric of order p > 1:

Wo(F,6) = jnf _(BIX Y)Y

(/ |F~1 1(x)|"dx)1/p.

e Wasserstein ball around X:
{Y . Wp(Fx, Fy) S (5} .
e Worst-case risk measure p: X — R:

sup {p(Y) : Wp(Fx, Fy) < d}.
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Uncertainty set induced by Wasserstein metrics (cont.)

Proposition 4
ForteR, p>1,6>0and X € X, we have

wp{EKY——ﬂ+]:M@U&yFy)gé}:Cgﬁm{(l—aXE&AX)—t)

+5ﬂfaf4m}

Recall the reverse ES optimization formula:

E[(X —t)] = Jmax {(1 =) (BSa(X) — 1)}

The extra term §(1 — a)* /P compensates for model uncertainty.
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Numerical example
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(a) Changes with t (fixed 6 = 0.1) (b) Changes with ¢ (fixed t = 2)

Figure: Worst-case mean excess loss with Wasserstein uncertainty
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Empirical analysis with insurance data

e CASdatasets: Normalized hurricane damages (ushurricane,
1900-2005); Normalized French commercial fire losses
(frecomfire, 1982-1996) with same observations.

e Calculate the worst-case value of mean excess loss under uncertainty
governed by the Wasserstein metric with p = 2.

e Fit the data with lognormal, Gamma and Weibull distributions as
benchmark distributions.

e Let the uncertainty level § vary in [dg, 2d0], where dg is the
Wasserstein distance between the fitted distribution and the
empirical distribution.

e ) too large = data become less relevant
e J too small = lose the desired robustness.
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Empirical analysis (fixed t)

The ratio r(J, t) of the worst-case mean excess loss to that of the
benchmark distribution, defined by
r((5 t) _ SUp{E[(Y — t)+] : W2(FX7 FY) < 5}
’ E[(X —t)4]

do 1.260 1.460 1.600 1.8 200

Lognormal | 1.708 1.839 1.985 2.132 2279 2425
Hurricane Weibull 1.853 2.012 2193 2352 2534 2715
Gamma 1.964 2149 2334 2539 2724 2950

Lognormal | 1.358 1.431 1505 1.582 1.657 1.735
Fire Weibull 1400 1.481 1564 1649 1.733 1.819
Gamma 1.456 1.548 1.644 1.740 1.837 1.937

Table: Values of r(d, ty) for the hurricane loss and the fire loss datasets.
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Reverse optimized certainty equivalents (OCE)

Let V be the set of increasing and convex functions v : R — R satisfying
(1) v(0) =0; (2) ¥ =sup,ep vi(x) > 1; (3) limioo Vi (—t) = 0. An
OCE is a risk measure R defined by

R(X) = inf {t +E[v(X — t)]}, X € X. (4)

(v =x4/(1 — ) = ES optimization formula. )

Theorem 3 (Reverse OCE optimization formula)
For X € Xg, t € R and v € V, it holds

E[v(X — )] = sup {B(R§(X)—1)}.
BE(0,7]

where RY(X) = inficx {t + LE[v(X — t)]} :

(v = x; = Reverse ES optimization formula. )
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Related Fenchel-Legendre transforms

(i) The Fenchel-Legendre transform of the convex quantile-based
function fi(a) = —(1 — a)ES,(X), is given by

(1) = max {at — A(a)} =E[X V1]

(i) The Fenchel-Legendre transform of the convex quantile-based
function (o) = aES, (X), is given by

5() = max {ot = Aa)} = E[(t~ X).]

Moreover, the set of maximizers for both maximization problems is
[P(X < t),P(X < t)].
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Conclusion

e ES optimization formula v.s Reverse ES optimization formula
e Worst-case risk under model uncertainty

e Uncertainty set induced by moments information.
e Uncertainty set induced by Wasserstein metrics.

e Other related applications

e Reverse OCE optimization formula.
e Related Fenchel-Legendre transforms.
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Thank you!
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