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What this talk is about

e Revisit worst-case first-order upper partial moment (UPM) under
uncertainty set induced by mean and variance, and subsets with
additional conditions including symmetrical distribution,
non-negative random loss.

e Derive closed-form worst-case second-order UPM (target
semi-variance) under different uncertainty sets.

e Develop worst-case target semi-variance with constraints on
expected losses over target levels (first-order UPM).

e Provide applications on robust portfolio selection with different
objectives.

Based on joint work with Jun Cai (Waterloo) and Tiantian Mao (USTC).
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Upper partial moment (UPM) risk measures

Let X be the random loss and F € F be the distribution of X.

Definition 1 (Upper partial moment)
Given a threshold level t € R, the n-th order UPM of X is defined as

EFX - 0t = [ (- 1" dF(x).

e Finance: Allows investors to set a subjective target for the
perceived level of investment risk to measure the downside risk.
(Chen/He/Zhang'11, Bertsimas/Popescu’02)

Target semi-variance EF [(X — t)3] v.s EF[(X — EF[X])3]

e Insurance: Stop-loss premium principle, semi-variance premium
principle. (Kaluszka'05, Cai/Tan'07, Cai/Chi'20)

e Economic: Connection to stochastic dominance and expected
utility theory. (Bawa'75, Gomez/Tang/Tong'22)
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Worst-case risk under model uncertainty

e Classical models often assume complete knowledge of the loss
distribution.

e Gap between the true distribution and the underlying distribution
due to insufficient data, prediction errors, or incorrect judgments.
= (distributional) model uncertainty

e Consider the worst-case scenario given partial information of the
underlying distribution as a compensation

e Finance (portfolio selection): Ben-Tal/Nemirovski'98,
Chen/He/Zhang'11, Liu/Yang/Yu'21.
e Insurance: Liu/Mao’'22, Cai/Liu/Yin'23.
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Uncertainty sets

The general model uncertainty problem with UPM risk measures is
formulated as follows:

FeLl

sup /too(x —t)" dF(x).

Given the mean p and the standard deviation o, the uncertainty set
L(u,0) induced by first two moments, and its subsets are denoted by

oo

£(u,c7):{FE]—":/_C:xdF(x):u,/oon dF(X):/.L2+U2},

Li(p,0)= {F eF: /Ooox dF(x) = p, '/OOOXZ dF(x) = p> 4+ o, F(0-) :0},

Ls(p,0) = {F € F: / x dF (x) = p, / x> dF(x) = p* +0°, Fis symmetric}.
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Symmetrical distribution and uncertainty set
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© Worst-case first-order UPM under model uncertainty
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Uncertainty sets reduction techniques

For any t € R, we have

sup EF[(X —1):]= sup EF[(X —t)].
FeL(p,o) FELs(,0)

o Li(p,0)={F € L(u,0): F is a k-point distribution}.
e Since Lo(p,0) C L(u, o), we have

sup EF[(X—1t);]> sup EF[(X—1t);].
FeLl(p,o) FeLly(p,0)

e Construct a two-point rv. X,
Xe = (EF[X|IX > t] 4+ ep)1ix<py + (EF[X|X < t] — €g)1uex<iy
prove that there exist a two-point distribution such that

sup EF[(X —t),] < sup EF[(X—1t)]
FEL(}L,O) FE»CZ(IMU)
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Uncertainty sets reduction techniques (cont')

For any t € R, we have

sup EF[(X —t):]=  sup  EF[(X —t).].
FELs(1,0) FELs s(p,0)

\,

For any t € R, we have

sp EF[(X—t)]= sup EF[(X—t),]
FeLl(u,0) FeL 3(n,0)

.

Note that, for k = 2,3, ..., we also define

Lis(p,0) ={F € Ls(u,0) : F is a k-point symmetric distribution},
Liw(p,0)={F € Li(n,0): Fis a k-point non-negative distribution}.
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Worst-case first-order UPM

Proposition 1 (Jagannathan'77)

If the uncertainty set of X is £(u, o), then

1
sup EF[(X — )] =5 (n—t+v/o7+ (u—1P).
FeL(p,o)

If the uncertainty set of X is Ls(u, o), then

12402
- 8(%(;)_1; ) t<p— %7
sup E[(X—t)i]=9 t(u+o-1t), p—5<t<p+%,
FeLs(n,0) o2 N o
B’ tzp+s

If the uncertainty set of X is £ (u,0) and p > 0, then

n—t, t <O,
F uzt 02+u2
sup E'[(X—t)¢]=q n— 22 0<t< “5n

FeL N
B Hu—t+ o2+ (u—17), t2 T

v
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e Worst-case target semi-variance under model uncertainty
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Worst-case target semi-variance
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Worst-case target semi-variance

If the uncertainty set of X is £(u, o), then

o+ (u—1t)? t<y,
awp EF[(x -2 =4 WY
FeLl(p,o) (o t> pu.

If the uncertainty set of X is £, (u,0) and > 0, then

sup EF[(X-t)]= sup EF[(X-1t)i]
FeLl (n,0) FeLlL(p,o)

If the uncertainty set of X is Ls(u,0), then

02+(:u’_t)27 t<pu-—o,
sup EF[(X —t)2] = <80t o<y,
FeLs(p,0) 2

bR t > L.

Zhanyi Jiao (z27jiao@uwaterloo.ca)

Worst-case UPM risk measures 13 /31



Worst-case target semi-variance
[e]e] e}

Worst-case target semi-variance with expected regret constraint

We assume the risk budget limit m € R* and consider the following
optimization problem:

sup EF[(X — 1)2],
FeLl(p,o)
sit. EF[(X—t)]<m.

which is equivalent to the following optimization problem:

sup  EF[(X —t)3],
FELm(p,0)
where

oo

Lm(p, o) = {F 6}':/ x dF(x) = p, / x* dF(x) = p? + o,

—0o0

/too(x — 1) dF(x) < m}.
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Worst-case target semi-variance with expected regret constraint (cont')

For t,; € R, 0,m € RT, assume m > (t — p)_. Then

2 2
t—p)?, p—m<t<uy,
sup ]EF[(X _ t)i] _ 02 + ( /”') H—=m 2
FEL(1,0) o5 t=p,

For t € R and p,0 € RT, we have

sup EF[(X—1t)32]= sup EF[(X-1)3]
FELy m(p,0) FELm(1,0)

Zhanyi Jiao (z27jiao@uwaterloo.ca) Worst-case UPM risk measures



Robust portfolio selection
0000000000000

Contents

@ Applications to robust portfolio selection

Zhanyi Jiao (z27jiao@uwaterloo.ca) Worst-case UPM risk measures



Robust portfolio selection
0000000000000

TSV-targeted portfolio selection

e Random loss vector in a portfolio: X = (X, ..., Xy) € R
e Allocation/selection of portfolio: w = (w, ..., wy) € R

e Total loss of the portfolio: wT™X = wi X; + - + wy Xy

The TSV-targeted robust portfolio optimization formulated as follows:

min sup EC¢[(w' X —t),]?
weRY Ge Mm

st. w e=1.

Ms(p,T)={G € G:E[X]=pu, cov[X] =T, G is symmetric},
Mp(p,T) = {G € G E[X] = p, cov[X] =T, E°[(w X — t);] < m}.
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Multi-dimensional sets transformation

If w # 0, then the following expressions hold:
(1) Muw(p,T)=L(w p,w'Tw),

(2) Muws(p,T)=Ls(w p,w'Tw),

(3) Muw.m(p,T) = Lin(wT s, w' Tw),

where the sets £, Ls and L, are one-dimensional uncertainty sets
defined previously.

For random vector X with distribution G, denote the corresponding sets
of possible distributions of w' X

(1) Mu(p,T)={F, x€F: GeM(unl)},
(2) Mws(u,N)={F,rx € F: GeMs(p,T)},
(3) Mu.m(p, M) ={Fyrx €F: GeMyu(pl}.
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Robust TSV-targeted portfolio selection

The inner part of original multiple-dimensional optimization problem is
transformed into one-dimensional problem

min sup EF[(w™ X — t),]?
weR? FelL(wT p,wTlTw)

s.t. wle=1.

Denote
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Robust TSV-targeted portfolio selection

Let I be a positive definite matrix. For t € R, w € R? with w'e = 1, The
optimal portfolio selection w* has the following expressions:

(1) If M = Ms(p,T), then

* _ (r—1 =i Vo -V &;,t
wim o et ) (%),

where £5, = argmingcp hs,e(§, /&% — 2vi€ + v2), and
hs,e(p1,0) = SUPFe £ (u,0) EF[(X - t)3].
(2) If M = Mp(p,T), then

5 _ =il 1 vo  —wvi\ (&me
wi = (e () (),

where &5, . = arg mingcg hm,t(&, \/vo&? — 2vi€ + ), and

hmyf(ﬂa U) = SUPFeL(u,0) EF[((X - t)i]
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HMCR-targeted portfolio selection

Classic mean-HMCR portfolio optimization model is formulated as
follows:

min, {E[w " X]+ A min (40 (B[(w X~ c)2])" ) }

weRd

Higher moment coherent risk (HMCR) measure

Robust mean-HMCR portfolio optimization formulated as follows:

: Gl T Gi(wT X — \P1)?
LU ngjp\)/l {E [w X]+)\<c+9(E [(w'X —c)i]) )}

st. w e=1.
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Robust SMCR-targeted portfolio selection

(1) f M = M(p,T) and ﬁz)l) < v, we have the optimal portfolio w*

W= e () (), )

C* _ 1% \/ ()\—|— 1)2(V0V2 — V12)
2202 — Dvo— (A 1)

where

(2) If M = Ms(p,T), we have the optimal portfolio w*

(i) If 9 <2 and )\2 92 1) < v, the optimal portfolio is w™ as stated
in (1).
(i) If &> +/2 and 2

5 _ ge=il —1 w —wvi\ (¢
W= e (00 (§)

< vo, the optimal portfolio w* is
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Robust SMCR-targeted portfolio selection (cont’)

Proposition 4 (cont’)

where

ot W (A0)? (vov2 — )

Vo )\9)2 Vo — 2()\ a4 1)2 |
(3) f M = Mp(pe,T), then

* _ (r—1 =i Vo -1 Cm
w =T p, T e)(_v1 ‘/2)<1>7

where ¢ = argmin;cg gm(¢, v/ W0 — 2vi¢ + v2), and
gm(p,0) =+ Amincer{c + 6+/h(c, 1, 0)} with

h(C, s 0) = SUPFeL,,(1,0) EF[(X - C)i]
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Empirical analysis with financial data

e Yahoo!Finance: Apple Inc. (AAPL), Netflix Inc. (NFLX),
Alphabet Inc. (GOOG), and eBay Inc. (EBAY)

e Three-year period daily losses from January 1, 2019, to January 1,
2022 (757 observations)

Stocks | Mean (u) Covariance matrix (I)

AAPL | -0.0021 0.00050589  0.00028480 0.00020685 0.00029607
NFLX | -0.0014 0.00028480 0.00036718 0.00015550 0.00023912
GOOG | -0.0010 0.00020685 0.00015550 0.00040873  0.00013994
EBAY | -0.0011 0.00029607 0.00023912 0.00013994  0.00037593

Table: Summary of four selected stocks mean and covariance matrix.
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Robust TSV-targeted portfolio

t=-0.1
m=0.001 | m=0.005 | m=001 | m=0.05| m=0.1
AAPL -0.05722 -0.05005 -0.04408 | -0.00888 | 0.35129
NFLX 0.32198 0.32190 0.32184 0.32148 0.31777
GOOG 0.38681 0.38441 0.38241 0.37062 0.24994
EBAY 0.34843 0.34374 0.33983 0.31679 0.08101
t=-05
AAPL -0.05831 -0.05477 -0.05204 | -0.03985 | -0.02931
NFLX 0.32199 0.32195 0.32192 0.32180 0.32169
GOOG 0.38717 0.38599 0.38508 0.38099 0.37746
EBAY 0.34914 0.34683 0.34504 0.33706 0.33016
t=-1
AAPL -0.05876 -0.05623 -0.05431 | -0.04594 | -0.03922
NFLX 0.32199 0.32197 0.32195 0.32186 0.32179
GOOG 0.38733 0.38648 0.38584 0.38303 0.38078
EBAY 0.34944 0.34779 0.34653 0.34105 0.33665

Table: The optimal robust portfolio for the TSV-targeted case when the
uncertainty set is induced by M, (g, T).
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0 =20, A=0.5
m=001| m=005| m=0.1 m=20.5 m=1
AAPL | -0.04712 | -0.04684 | -0.04665 | -0.04583 | -0.04522
NFLX 0.32187 0.32187 0.32187 0.32186 | 0.32185
GOOG 0.38343 0.38333 0.38327 0.38299 | 0.38279
EBAY 0.34182 0.34164 0.34151 0.34098 | 0.34057
m=0.01, A=0.5
=3 =5 # =10 0 =20 6 =50
AAPL | 0.02722 | -0.00787 | -0.03405 | -0.04712 | -0.05495
NFLX | 0.32111 | 0.32147 0.32174 | 0.32187 0.32195
GOOG | 0.35852 | 0.37028 0.37905 0.38343 0.38605
EBAY | 0.29316 | 0.31613 0.33326 | 0.34182 0.34695

Table: The optimal robust portfolio for the SMCR-targeted case when
the uncertainty set is induced by M,(,T).

Worst-case UPM risk measures
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m=0.01, 0 =20

A=005| A=01| A=05 A=1 A=10
AAPL | 0.07155 | 0.00526 | -0.04712 | -0.05365 | -0.05952
NFLX | 0.32065 | 0.32133 | 0.32187 | 0.32194 | 0.32200
GOOG | 0.34367 | 0.36588 | 0.38343 | 0.38561 | 0.38758
EBAY | 0.26414 | 0.30753 | 0.34182 | 0.34609 | 0.34994

Table: The optimal robust portfolio for the SMCR-targeted case when
the uncertainty set is induced by M,(,T).
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Conclusion

e One-dimensional: Derived closed-form worst-case first-order UPM
and worst-case target semi-variance under various uncertainty sets
including

e symmetrical distribution,
e non-negative random loss,
e constraint on expected losses over target level.

Main idea: reduce to a corresponding finite-point discrete
uncertainty sets.

e Multi-dimensional: robust portfolio selection with TSV-targeted
and SMCR-targeted objectives.
Main idea: reduce inner multi-dimensional problem to
one-dimensional problem.

e Empirical study using real financial data = other insurance
applications?
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