ES optimization formula	Reverse ES optimization formula	Worst-case risk	Other applications

A reverse Expected Shortfall/CVaR optimization formula

Zhanyi Jiao

Department of Statistics and Actuarial Science University of Waterloo

25th International Congress on IME

July 13, 2022

M/bat this tall	(is about		
0000	0000	0000000000	0000000
ES optimization formula	Reverse ES optimization formula	Worst-case risk	Other applications

- Derive a reverse Expected Shortfall optimization formula.
- Compare the symmetries between ES optimization formula and the reverse one.
- Provide applications on worst-case risk under model uncertainty.
- Develop further theoretical results on reverse ES optimization formula
 - Reverse optimized certainty equivalents (OCE) formula.
 - Related Fenchel-Legendre transforms.

ES optimization formula ●000	Reverse ES optimization formula	Worst-case risk 00000000000	Other applications
Contents			

2 Reverse ES optimization formula

3 Worst-case risk under model uncertainty

Other applications

ES optimization formula 0●00	Reverse ES optimization formula	Worst-case risk 00000000000	Other applications
Preliminary			

- $(\Omega, \mathcal{F}, \mathbb{P})$ atomless probability space.
- Let \mathcal{X} be the set of integrable random variable, and X be the random loss.
- Left-quantile: $\operatorname{VaR}_{\alpha}^{-}(X) = \inf\{t \in \mathbb{R} : \mathbb{P}(X \leq t) \geq \alpha\};$
- Right-quantile: $\operatorname{VaR}^+_{\alpha}(X) = \inf\{t \in \mathbb{R} : \mathbb{P}(X \leq t) > \alpha\}$.
- Expected shortfall: $\mathrm{ES}_{\alpha}(X) = \frac{1}{1-\alpha} \int_{\alpha}^{1} \mathrm{VaR}_{\beta}^{-} \,\mathrm{d}\beta$.²
- Left-Expected shortfall: $\mathrm{ES}^{-}_{\alpha}(X) = \frac{1}{\alpha} \int_{0}^{\alpha} \mathrm{VaR}^{-}_{\beta}(X) \,\mathrm{d}\beta$

$${}^{1}\operatorname{VaR}_{0}^{-}(X) = -\infty \text{ and } \operatorname{VaR}_{1}^{+}(X) = \infty.$$

 ${}^{2}\operatorname{ES}_{1}(X) = \operatorname{VaR}_{1}^{-}(X).$

Zhanyi Jiao (z27jiao@uwaterloo.ca)

Reverse ES optimization formula

Worst-case risk 00000000000 Other applications

ES/CVaR optimization formula

Theorem 1 (Rockafella and Uryasev, 2002)

For $X \in \mathcal{X}$ and $\alpha \in (0, 1)$, it holds

$$\mathrm{ES}_{\alpha}(X) = \min_{t \in \mathbb{R}} \left\{ t + \frac{1}{1 - \alpha} \mathbb{E}[(X - t)_{+}] \right\}, \tag{1}$$

and the set of minimizers for (1) is $[\operatorname{VaR}^{-}_{\alpha}(X), \operatorname{VaR}^{+}_{\alpha}(X)].$

TITLE	CITED BY YEAR
Optimization of conditional value-at-risk RT Rockafellar, S Uryasev Journal of risk 2, 21-42	7294 2000
Conditional value-at-risk for general loss distributions RT Rockafellar, S Uryasev Journal of banking & finance 26 (7), 1443-1471	4530 2002

¹Source: https://scholar.google.ca/citations?user=Uwg1zpkAAAAJ&hl=enoi=sra

Zhanyi Jiao (z27jiao@uwaterloo.ca)

A reverse ES/CVaR optimization formula 5 /

5 / 29

Why is ES optimization formula such influential

- Efficient optimization techniques for portfolio allocation do not allow for direct controlling of percentiles of distribution.
 - ES optimization formula is convex w.r.t. t
 - It is possible to transform the problem into a linear program and find the global solution.
- It is difficult to handle ES_α because of VaR_α involved in its definition.
 - Minimizing the function w.r.t. *t* gives ES.
 - VaR is the minimum point of this function w.r.t. t.

ES optimization formula	Reverse ES optimization formula ●000	Worst-case risk 00000000000	Other applications
<u> </u>			

Contents

2 Reverse ES optimization formula

3 Worst-case risk under model uncertainty

Other applications

Reverse ES optimization formula 0000

Worst-case risk

Other applications

Reverse ES optimization formula

Theorem 2 (Reverse ES optimization formula)

For $X \in \mathcal{X}$ and $t \in \mathbb{R}$, it holds

$$\mathbb{E}[(X-t)_+] = \max_{\alpha \in [0,1]} \left\{ (1-\alpha) \left(\mathrm{ES}_{\alpha}(X) - t \right) \right\},$$
(2)

and the set of maximizers for (2) is $[\mathbb{P}(X < t), \mathbb{P}(X \le t)]$.

Corollary 1

For $t \in \mathbb{R}$ and $X \in \mathcal{X}$, it holds

$$\mathbb{E}[X \wedge t] = \min_{\alpha \in [0,1]} \left\{ \alpha \mathrm{ES}_{\alpha}^{-}(X) + (1-\alpha)t \right\},$$
(3)

and the set of minimizers for (3) is $[\mathbb{P}(X < t), \mathbb{P}(X \le t)]$.

(4) (3) (4) (4) (4)

	waan tuya farmulaa		0000000
ES optimization formula	Reverse ES optimization formula	Worst-case risk	Other applications

Symmetries between two formulas

(1) Functional properties on \mathcal{X}

- For a fixed t ∈ ℝ, the mapping X → E[(X − t)₊] is linear in the distribution of X and convex in the quantile of X.
- For a fixed α ∈ (0, 1), the mapping X → ES_α(X) is linear in the quantile of X and concave in the distribution of X.

(2) Optimization problems

- In the minimization (1) over $t \in \mathbb{R}$, the function $t \mapsto t + \frac{1}{1-\alpha}\mathbb{E}[(X-t)_+]$ is convex in t.
- In the maximization (2) over $\alpha \in [0, 1]$, the function $\alpha \mapsto (1 \alpha)(ES_{\alpha}(X) t)$ is concave in α .
- (3) Solutions to the optimization problems
- (4) Parametric forms

Reverse ES optimization formula

Worst-case risk 00000000000 Other applications

Symmetries between two formulas (cont.)

Theorem 1 (ES/CVaR optimization formula)

For $X \in \mathcal{X}$ and $\alpha \in (0, 1)$, it holds

$$\mathrm{ES}_{\alpha}(X) = \min_{t \in \mathbb{R}} \left\{ t + \frac{1}{1-\alpha} \mathbb{E}[(X-t)_+] \right\},$$

and the set of minimizers is $[\operatorname{VaR}^{-}_{\alpha}(X), \operatorname{VaR}^{+}_{\alpha}(X)].$

Theorem 2 (Reverse ES optimization formula)

For $X \in \mathcal{X}$ and $t \in \mathbb{R}$, it holds

$$\mathbb{E}[(X-t)_+] = \max_{\alpha \in [0,1]} \left\{ (1-\alpha) \left(\mathrm{ES}_{\alpha}(X) - t \right) \right\},\,$$

and the set of maximizers is $[\mathbb{P}(X < t), \mathbb{P}(X \le t)].$

ES optimization formula	Reverse ES optimization formula	Worst-case risk ●0000000000	Other applications
Contents			

Expected Shortfall optimization formula

2 Reverse ES optimization formula

3 Worst-case risk under model uncertainty

Other applications

ES optimization formula	Reverse ES optimization formula	Worst-case risk o●ooooooooo	Other applications
XA/ .	1		

Worst-case mean excess loss

Suppose that there is uncertainty about a random vector \mathbf{X} , assumed to be in a set \mathcal{U} , and $f : \mathbb{R}^d \to \mathbb{R}$ is a loss function. By the reverse ES optimization formula, the worst-case mean excess loss is computed by

$$\sup_{\mathbf{X}\in\mathcal{U}}\mathbb{E}[(f(\mathbf{X})-t)_+] = \max_{\alpha\in[0,1]}\bigg\{(1-\alpha)\left(\sup_{\mathbf{X}\in\mathcal{U}}\mathrm{ES}_{\alpha}(f(\mathbf{X}))-t\right)\bigg\}.$$

ES optimiza 0000	tion formula	Reverse ES optimization	on formula Worst-case risk 0000000000	Other applications
11		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Uncertainty set induced by moment information

 Uncertainty set induced by mean and a higher moment: for p > 1, m∈ ℝ and v ≥ 0, denote by

$$\mathcal{L}^p(m,v) = \{X \in \mathcal{X} : \mathbb{E}[X] = m, \mathbb{E}[|X-m|^p] \leq v^p\}.$$

• The problem of $\sup_{X \in \mathcal{L}^{p}(m,v)} \rho(X)$ is better suited for $\rho = \text{ES}_{\alpha}$ (see e.g., (Pesenti et al, 2020))

•
$$\sup_{X \in \mathcal{L}^p(m,v)} \rho(X) = m + v \sup_{X \in \mathcal{L}^p(0,1)} \rho(X).$$

• $\sup_{X \in \mathcal{L}^p(m,v)} \operatorname{ES}_{\alpha}(X) = m + v\alpha(\alpha^p(1-\alpha) + (1-\alpha)^p\alpha)^{-1/p}$

 \Rightarrow mean excess loss $\rho: X \mapsto \mathbb{E}[(X - t)_+].$

Reverse ES optimization formula

Worst-case risk

Other applications

Uncertainty set induced by moment information (cont.)

Proposition 3

For p > 1, $m, t \in \mathbb{R}$ and $v \ge 0$, we have

$$\sup_{X \in \mathcal{L}^{p}(m,v)} \mathbb{E}[(X-t)_{+}] = \max_{\alpha \in [0,1]} \left\{ (1-\alpha)(m-t) + v \left((1-\alpha)^{1-p} + \alpha^{1-p} \right)^{-1/p} \right\}$$

In the most popular case p = 2, Proposition 3 gives

$$\sup_{X \in \mathcal{L}^{2}(m,v)} \mathbb{E}[(X-t)_{+}] = \frac{1}{2} \left(m - t + \sqrt{v^{2} + (m-t)^{2}} \right),$$

which coincides with Jagannathan (1977).

Zhanyi Jiao (z27jiao@uwaterloo.ca)

< □ > < □ > < □ > < □ > < □ > < □ >

Reverse ES optimization formula

Worst-case risk 00000000000 Other applications

Numerical example

Figure: Worst-case mean excess loss with moment conditions in $\mathcal{L}^{p}(0,1)$: $\mathcal{L}^{p}(0,1) = \{X \in \mathcal{X} : \mathbb{E}[X] = 0, \mathbb{E}[|X|^{p}] \leq 1\}$

Zhanyi Jiao (z27jiao@uwaterloo.ca)

15 / 29

э

→ ∃ →

ES optimiza 0000	tion formula	Reverse ES optimizat	tion formula	Worst-case risk 00000000000	Other applications
		1	1.4.7		

Uncertainty set induced by Wasserstein metrics

• Wasserstein metric of order $p \ge 1$:

$$\mathcal{N}_{p}(F,G) = \inf_{X \sim F, Y \sim G} \left(\mathbb{E}[|X - Y|^{p}] \right)^{1/p} \\ = \left(\int_{0}^{1} |F^{-1}(x) - G^{-1}(x)|^{p} \, \mathrm{d}x \right)^{1/p}$$

• Wasserstein ball around X:

$$\{Y: W_p(F_X, F_Y) \leq \delta\}.$$

• Worst-case risk measure $\rho : \mathcal{X} \to \mathbb{R}$:

$$\sup\left\{\rho(Y): W_p(F_X,F_Y)\leq \delta\right\}.$$

٠

3 D (3 D)

ES optimization formula 0000 Reverse ES optimization formula 0000 0000000000 0000 00000 Una contraction to a contraction to the contraction to

Uncertainty set induced by Wasserstein metrics (cont.)

Proposition 4

For $t \in \mathbb{R}$, $p \ge 1$, $\delta \ge 0$ and $X \in \mathcal{X}$, we have

$$\sup \left\{ \mathbb{E}[(Y-t)_+] : W_p(F_X, F_Y) \le \delta \right\} = \max_{\alpha \in [0,1]} \left\{ (1-\alpha)(\mathrm{ES}_\alpha(X) - t) + \delta(1-\alpha)^{1-1/p} \right\}.$$

Recall the reverse ES optimization formula:

$$\mathbb{E}[(X-t)_+] = \max_{\alpha \in [0,1]} \left\{ (1-\alpha) \left(\mathrm{ES}_{\alpha}(X) - t \right) \right\}$$

The extra term $\delta(1-\alpha)^{1-1/p}$ compensates for model uncertainty.

< □ > < □ > < □ > < □ > < □ > < □ >

Reverse ES optimization formula

Worst-case risk 000000000000 Other applications

Numerical example

(a) Changes with t (fixed $\delta = 0.1$) (b) Changes with δ (fixed t = 2)

Figure: Worst-case mean excess loss with Wasserstein uncertainty

18 / 29

э.

ES	optimization	

Empirical analysis with insurance data

- CASdatasets: Normalized hurricane damages (ushurricane, 1900-2005); Normalized French commercial fire losses (frecomfire, 1982-1996) with same observations.
- Calculate the worst-case value of mean excess loss under uncertainty governed by the Wasserstein metric with p = 2.
- Fit the data with lognormal, Gamma and Weibull distributions as benchmark distributions.
- Let the uncertainty level δ vary in $[\delta_0, 2\delta_0]$, where δ_0 is the Wasserstein distance between the fitted distribution and the empirical distribution.
 - + δ too large \Rightarrow data become less relevant
 - δ too small \Rightarrow lose the desired robustness.

ES optimization formula	Reverse ES optimization formula	Worst-case risk 000000000●0	Other applications
- · · · ·	• ((• • • • • • • • • • • • • • • • •		

Empirical analysis (fixed t)

The ratio $r(\delta, t)$ of the worst-case mean excess loss to that of the benchmark distribution, defined by

$$r(\delta,t) = \frac{\sup\{\mathbb{E}[(Y-t)_+]: W_2(F_X,F_Y) \leq \delta\}}{\mathbb{E}[(X-t)_+]}.$$

		δ_0	$1.2\delta_0$	$1.4\delta_0$	$1.6\delta_0$	$1.8\delta_0$	$2\delta_0$
	Lognormal	1.708	1.839	1.985	2.132	2.279	2.425
Hurricane	Weibull	1.853	2.012	2.193	2.352	2.534	2.715
	Gamma	1.964	2.149	2.334	2.539	2.724	2.950
	Lognormal	1.358	1.431	1.505	1.582	1.657	1.735
Fire	Weibull	1.400	1.481	1.564	1.649	1.733	1.819
	Gamma	1.456	1.548	1.644	1.740	1.837	1.937

Table: Values of $r(\delta, t_0)$ for the hurricane loss and the fire loss datasets.

Reverse ES optimization formula

Worst-case risk 0000000000 Other applications

Empirical analysis (fixed δ_0)

Zhanyi Jiao (z27jiao@uwaterloo.ca)

A reverse ES/CVaR optimization formula

21 / 29

э

ES optimization formula	Reverse ES optimization formula	Worst-case risk 00000000000	Other applications
Contents			

Expected Shortfall optimization formula

2 Reverse ES optimization formula

3 Worst-case risk under model uncertainty

Other applications

Reverse ES optimization formula

Worst-case risk 00000000000 Other applications

Optimized certainty equivalents (OCE)

Let V be the set of increasing and convex functions $v : \mathbb{R} \to \mathbb{R}$ satisfying v(0) = 0, $\bar{v} \ge 1$ and $\lim_{t\to\infty} v'_+(-t) = 0$ where $\bar{v} = \sup_{x\in\mathbb{R}} v'_+(x)$ and v'_+ is the right derivative of v. An OCE is a risk measure R defined by

$$R(X) = \inf_{t\in\mathbb{R}} \left\{t + \mathbb{E}[v(X-t)]\right\}, \quad X \in \mathcal{X}_B.$$

 $(v = x_+/(1 - \alpha) \Rightarrow \mathsf{ES}$ optimization formula.)

Theorem 3 (Reverse OCE optimization formula)

For $X \in \mathcal{X}_B$, $t \in \mathbb{R}$ and $v \in V$, it holds

$$\mathbb{E}[\nu(X-t)] = \sup_{\beta \in (0,\bar{\nu}]} \left\{ \beta(R_{\beta}^{\nu}(X)-t) \right\}.$$

where $R^{v}_{\beta}(X) = \inf_{t \in \mathbb{R}} \left\{ t + \frac{1}{\beta} \mathbb{E}[v(X-t)] \right\}$.

($v = x_+ \Rightarrow$ Reverse ES optimization formula.)

Zhanyi Jiao (z27jiao@uwaterloo.ca)

23 / 29

A B A A B A

Worst-case risk

Other applications 0000000

Related Fenchel-Legendre transforms

For a convex function $f : \mathbb{R} \to \mathbb{R}$, its Legendre-Fenchel transform is the function f^* on \mathbb{R} defined by

$$f^*(eta) = \sup_{t\in\mathbb{R}} \left\{ teta - f(t)
ight\}, \quad eta\in\mathbb{R},$$

where β may be constrained to a subset of \mathbb{R} such that f^* is real.

A B b A B b

Reverse ES optimization formula

Worst-case risk 00000000000 Other applications

Related Fenchel-Legendre transforms

Proposition 5

(i) The Fenchel-Legendre transform of the convex quantile-based function $f_1(\alpha) = -(1 - \alpha) \text{ES}_{\alpha}(X)$, is given by

$$f_1^*(t) = \max_{\alpha \in [0,1]} \{ \alpha t - f_1(\alpha) \} = \mathbb{E}[X \lor t].$$

(ii) The Fenchel-Legendre transform of the convex quantile-based function $f_2(\alpha) = \alpha \text{ES}^-_{\alpha}(X)$, is given by

$$f_2^*(t) = \max_{\alpha \in [0,1]} \{\alpha t - f_2(\alpha)\} = \mathbb{E}[(t-X)_+].$$

Moreover, the set of maximizers for both maximization problems is $[\mathbb{P}(X < t), \mathbb{P}(X \le t)].$

< ロト < 同ト < ヨト < ヨト

ES optimization formula	Reverse ES optimization formula	Worst-case risk 00000000000	Other applications
Conclusion			

- ES optimization formula v.s Reverse ES optimization formula
- Worst-case risk under model uncertainty
 - Uncertainty set induced by moments information.
 - Uncertainty set induced by Wasserstein metrics.
- Other related applications
 - Reverse OCE optimization formula.
 - Related Fenchel-Legendre transforms.

ES optimization formula			Other applications
Reference			

Guan, Y., Jiao, Z., & Wang, R. (2022) A reverse Expected Shortfall optimization formula. *arXiv preprint* arXiv:2203.02599

Jagannathan, R. (1977)

Minimax procedure for a class of linear programs under uncertainty. *Operations Research* 25(1), 173-177.

Liu, F., Cai, J., Lemieux, C., & Wang, R. (2020) Convex risk functionals: Representation and applications. *Insurance: Mathematics and Economics* 90, 66-79.

Pesenti, S. M., Wang, Q., & Wang, R. (2020) Optimizing distortion riskmetrics with distributional uncertainty *Available at SSRN 3728638*.

Rockafellar, R. T., & Uryasev, S. (2002) Conditional value-at-risk for general loss distributions. *Journal of banking & finance* 26(7), 1443-1471.

27 / 29

ES optimization formula	Reverse ES optimization formula	Worst-case risk	Other applications
			00000000

Thank you!

< 行

3 🖒 🖌 3

Reverse ES optimization formula

Worst-case risk 00000000000 Other applications

Two important applications (cont.)

Proposition 1 (ES optimization)

Minimizing the expected shortfall $\phi_{\alpha}(\omega)$ with respect to ω is equivalent to minimizing $F_{\alpha}(\omega, t)$ over all $(\omega, t) \in W \times \mathbb{R}$

$$\min_{\omega \in W} \phi_{\alpha}(\omega) = \min_{(\omega,t) \in W imes \mathbb{R}} F_{\alpha}(\omega,t).$$

Proposition 2 (ES constraints)

Minimizing $g(\omega)$ over $\omega \in W$ satisfying $\phi_{\alpha_i}(\omega) \leq c_i$ for i = 1, ..., n,

\updownarrow

Minimizing $g(\omega)$ over $(\omega, \alpha_1, ..., \alpha_n) \in W \times \mathbb{R} \times \cdots \times \mathbb{R}$ satisfying $F_{\alpha}(\omega, t) \leq c_i$

(日)

29 / 29